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Tide Chart

This presentation addresses the application of a nonlinear systems theory to the modeling of nonlinear unsteady acrodynamic
responses. In particular, ransonic acrodynamic responses, such as those computed using codes, will be modeled.
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OUTLINE

Motivation and Approach

Volterra Theory of Nonlinear Systems

CAP-TSD Code

Application to a CFD Model
(NACA 0012 rectangular wing)

Concluding Remarks

Outline Chart

The presentation begins with a brief description of the. motivation and a h that has been taken for this research. This will be
followed by a description of the Volterra Theory of Nonlinear Systems and the CAP-TSD code which is an aeroelastic, transonic CFD
(Computational Fluid Dynamics) code. The apglicaﬁon of the Volterra theory to a CFD model and, more specifically, to a CAP-TSD
model of a rectangular wing with a NACA 0012 airfoil section will be presented. Finally, some concluding remarks will be made.
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MOTIVATION FOR RESEARCH

Modern Control Theory (time domain)

Current Future
Approach Approaches
Time-domain Nonlinear
Approximate Aerodynamics
Aerodynamics
f RFAs CFD _~ * Transonic
Linear ~ behavior
Frequency- .
Domain Aero High alpha
Motivation For Research

The current approach for performing aeroservoelastic analysis and design, in the preliminary design stage, begins with the generation
of linear, frequency-domain acrodynamics such as those obtained using doublet lattice theory. Using the concept of rational function
approximations, a time-domain model of the linear acrodynamics is generated which is then amenable for use with modem control
theory. In the future, however, it is highly desirable to be able to design control laws that can account for nonlinearities in the flow such
as the nonlinearities created by transonic flows and high alpha motions. Many of these complex behaviors are currently modeled using
CFD codes but there is, currently, no practical method for using the information generated by CFD codes in modern control theary.
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BASIC APPROACH

« To model unsteady nonlinear aerodynamic responses
as a Volterra nonlinear system

o] Linear sensor
commands Structure data
from e—pp ' —p to
control ] . control

Nonlinear
system Aero RN system

Basic Approach

An approach that addresses the problem mentioned in the previous chart is to model the unsteady nonlinear acrodynamic system asa
Volterra nonlinear system. This system can then be coupled with a structure, usually a linear structure but this is not a hard requirement
for the methodology. This acroclastic system can then be treated as the plant for which control laws can be designed and/or evaluated.
But what exacdy is a Volwerra nonlinear sysiem ?
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VOLTERRA THEORY OF NONLINEAR SYSTEMS
Volterra Series

t
y(t) = jh (1) ux) dt +
0
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Assumes system is causal and time invariant
Symmetric higher-order kernels: hzs(t s ,t2)=h28(t2,t N
Higher-order kernels are measure of nonlinearity
Theory also referred to as the Volterra-Wiener Theory

Volteira Theory of Nonlinear Systems, Volterra Series .

The basic premise of the Volterra theory of nonlinear systems is that the response of a nonlincar system, y(t), due to an arbi
input, u(t), can be predicted by an infinite series of multidimensional convolution integrals. This is known as the Volterra series.
convolution integral has a kernel associated with that particular order. That is, the first integral, also referred to as the first-order integral,
has the standard one-dimensional kemel of unit impulse response. The second integral, or the second-order convolution, has the second-
order kernel which is a two-dimensional unit ig?..f'se response, and so on. This particular formulation assumes that the system is causal
and time invariant. The higher-order kernels, of order two and above, are symmetric. These kernels are also a measure of nonlinearity.
This can be clearly seen when the higher-order kernels are zero and the response of the system is lincar. Therefore, when the higher-
order kernels are non-zero valued, they represent a deviation from linear response or a nonlinear response. Due to the contributions of
Norbert Wiener, the theory is also referred w as the Volterra-Wiener theory of nonlinear systems.
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VOLTERRA THEORY OF NONLINEAR SYSTEMS
Volterra Series

For a "weakly" nonlinear system,
t
y(t) = [h.(t-7) u(z) dr +
0

tt

ghzs(t'T ] ,t-’tz) u(t 1) u(1:2) d1:1 d’tz

« Many physical systems accurately modeled as weakly
nonlinear

« The basic problem is one of kernel identification

Weakly Nonlinear Systwems

The assumption of a weakly nonlinear system can be made in order to simplify the present analysis. This assumption simply states
that kemnels of order three and above are negligible and the response of the system can be modeled using only second-order
nonlinearities. There exist many physical systems that have been accurately modeled as weakly nonlinear in the fields of biology,
chemistry, and robotics. The basic problem, then, is one of kemel identification. If the first- and second-order kemnels can be identified,
then the response of the nonlinear system to arbitrary inputs can be computed.
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VOLTERRA THEORY OF NONLINEAR SYSTEMS
Kernel Definition and Identification
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« For a linear system, second- (and higher-) order
kernels are identically zero

» Nature of nonlinear kernels depends on the nature
of the system being investigated

Kemnel Definition and Identification

One method for identifying kernels is the method of unit impulse responses. Shown in this chart is the definition of the second-order
kemel, for a weakly nonlinear system, using unit impulse responses. The y1 response is the response of the nonlinear system 1o a unit
impulse input at time t1; y2 is the response of the nonlinear system to a unit imp: ulsemgmumtz.uﬂyuudtemsponseofﬂne
nonlinear system to a unit impulse i gtunmtlmdaumnmpulsemputunmea ince the system is time invariant, y2 is y1 shifted
in time. The second-order kernel is then computed as one-half the difference of these responses. As the time lag, T, between the two
unitmpuhcmpuunvuwd.nddmmdnumsofﬂnseomd—aderkmlmgemm As can be seen, the second-order kemel is a
two-dimensional function of time, t, and time lag, T. It is clear from this definition that for a purely linear system, the second-order
kameluldamcnllymbythepnmpleof superposition. When this secon-order kernel is non-zero, this implies a deviation from
linearity, or a nonlincar response. The nature, or character, ofthemnhneukmlsdcpmdsonthesymmbemgmvesugawdmdm
assumptions can be made a priori to the actual computation of the kernel.
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VOLTERRA THEORY OF NONLINEAR SYSTEMS
State-Space Realization

. Linear %= Ax + Bu

y = Cx
~ and h(t) = C [ exp(At) ] B

-Nonlinear (Bilinear State Equation)

»)'(=Ax+qu+Bu
y = Cx

and h(t, ,t2) = C[exp(Atz)(N)exp(At ,)1B

. If kernels are known, then A, B, C, and N matrices
can be computed.

State-Space Realization

Amﬂypawerfulchuacmisﬁcofderolmadwyofnmﬁmarsymsisshowninthischm It is well known that for a linear
system described as shown here that the unit impulse response of that system is defined as shown. If the unit impulse response of the
system is known, then using realization techniques one can compute the A, B, and C marrices. The analogous situation exists for a

olterra nonlinear system where the second-order kernel is defined as shown. Therefore, if the second-order kernel of a system can be
identified, the A, B, C, and N matrices of a bilinear state-space equation can be realized. This is then a nonlinear, state-space description

~ of the nonlinear unsteady acrodynamic sysem. - - - - s
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CAP-TSD CODE

« Computational Aeroelasticity Program - Transonic
Small Disturbance |

» Uses time-accurate, approximate factorization
finite-difference algorithm

 Applicable to realistic configurations

CAP-TSD Code

The CFD code used for this research is the CAP-TSD code. CAP-TSD is an acronym that stands for Computational Acroelasticity
Program - Transonic Small Disturbance. The code solves the nonlinear, general-frequency transonic small disturbance equation using a
time-accurate, approximate factorization algorithm developed by Dr. Jack Batina and a team from the Unsteady Aerodynamics Branch.
The code is applicable to realistic configurations.
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APPLICATION TO A CFD MODEL

. Theory -- Continuous systems -- unit impulse function

(example in paper and Ref. 23)

unit pulse function u(t) = 1.0 for t=10
0.0 for t#10

» Unsteady Aerodynamic System
input -- downwash function
output -- lift or moment response

Application to a CFD Model

The Volierra theory discussed thus far addresses continuous systems for which the unit impulse function is defined. CFD codes,
however, are discrete systems. Thercfore, the unit pulse function, which is the discrete equivalent of the unit impulse input for continous
systemns, should be used. ﬂuunitp\nseﬁxmﬁonisdcﬁmduhavingavalneofm\ityaxompointinﬁmc and being zero at all other
times. The unsteady acrodynamic system is defined as having the downwash function as the input and 1ift, moment, or any other force
as its output. Definition of the input and output depends on the system to be investigated.
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APPLICATION TO CAP-TSD

« Downwash function in CAP-TSD for any modeshape

 _ Ei d¢(X,Y)
f(x,y,t)" = dx +A1(t)————dx | '|'
+Ag(1) () 0x,y) EN

ref

Apply unitpulseto A 1 (t) and A2(t)

« Exponential pulse capability (NOT unit pulse)
P(t)=8, exp(~w(t-t;)?) :
B(t)=—2w(t-t)p

For arbitrary pitching motion,
A1) =p(t) and Ax(t) = B(Y)

Application to CAP-TSD

More specifically, the application of the Volterra theory to the CAP-TSD code is shown in this chart The downwash function is
defined as shown where the plus and minus signs represent the upper and lower surfaces of the airfoil. The dz/dx term are the slopes of
the and lower surfaces of the airfoil. The A1 term represents the rate of change of motion since it is multiplied by the modal slopes
and Amereptmmsdiemalmotion.AunitpdseisappliedmAlmdAZsepmnlymobninﬂnmitpuhemspmuedwb
each of these terms of the downwash. The CAP-TSD code has a capability referred t0 as the exponential capability which should
not be confused with the unit pulse input. The exponential pulse capability is defined as shown and for itrary motions, the Al werm is
replaced with the p(t) function and the A2 term is replaced with the rate-of-change of p(t) function.
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RESULTS FOR NACA0012 RECTANGULAR WING
Computational Model

« NACA0012 rectangular wing with pitch and plunge
degrees of freedom

« Semi-span model (panel AR=2.0)

 Grid dimensions: 140 x 40 x 92

Computational Model
The CAP-TSD model consists of a rectan wing with a NACA 0012 airfoil and with pitch and plunge degrees of freedom. Itisa

suni-sgavenlmodelwidupmelupectnﬁo 2.0. The grid is dimensioned 140 by 40 by 92 grid points in the x-, y-, and z-directions
respectively.
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RESULTS FOR NACA0012 RECTANGULAR WING
Analysis

« Lift-coefficient response due to pitch about the
mid-chord

» All responses atM =0.8

« Nonlinear responses about a converged steady-state
solution

Analysis .
The results that will be presented consist of lift coefficient duc to a pitching motion about the mid-chord of the wing. All results are

for a Mach number of 0.8, for which a shock exists so that differences berween the linear (flat plate) and nonlinear (thickness) solutions
should be noticeable. All nonlinear CAP-TSD solutions were computed about a converged stcady-state solution.
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LINEAR (FLAT PLATE) UNIT PULSE RESPONSE IN LIFT
DUE TO FIRST COMPONENT OF PITCHING MOTION

05

0.0 W

-05 % I X
0 1 2

chord lengths of travel

Lineaf (flat plate) Unit Pulse Response in Lift Due to First Component of Pitching Motion

This is the unit pulse response in lift due to the first component of the pitching motion, or the downwash. The re i
square integrable, as would be expected. pitching W sponse is stable, or
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LINEAR (FLAT PLATE) UNIT PULSE RESPONSE IN LIFT
DUE TO SECOND COMPONENT OF PITCHING MOTION

-

chord Iengths of travel

Lilur(ﬂnplm)UnitPuheR«pmsein[iﬁDueloSecondCanpommofPiwhingMoﬁm

Thisiuheunixpuﬂselcspomeinliﬁduenodsewondcompmemofmepitchingmodon.orﬂndmnwuh.A , this response is
stable, or square integrable. lnadertovalidmmmWsesmhdeedunitpdsmpm.mubimrym?ci:in;motimw
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~ LOW FREQUENCY PITCHING MOTION

30

deg, /
deg/s /
2
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0.0 — \ S
\
i
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pitch rate (deg/s) \
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-3.0 e L e i 1
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chord lengths of travel
Low Frequency Pitching Modon
This is the pitching motion that was generated. It consists of a positive pitch up o 3 degrees and then back down t0 0 degrees. The
i ing rate-of-change of motion is also presented. This motion was then processed through the CAP-TSD code 1o obtain the

CAP-TSD flat plase solution. The pitching motion was convoluted with the first unit pulse response presented and the rate-of-change of
pitching motion was convoluted with the second unit pulse response presented. These two convolutions were then added to obiain the
total lincar convolution response.
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LIFT DUE TO LOW FREQUENCY PITCHING MOTION

50 —— CAP-TSD flat plate (6000s,40million,1day)
c —<&— linear convolution (10s,200k,15s)
L
40 -
30F
20
10}F
%
. ] i R
0 1 2 3 4 5

chord lengths of travel

Lift Due 1o Low Frequency Pitching Motion

'I'huisacomplnsonofﬂleCAPTSDﬂnphn:soludonnnddlehmroonvolunonsolunonfadlelowfmqumcypnchmgm
As ¢an be seen, the comparison is excellent yielding identical responses to plottin, lccuncy Itis imy t to note the savings in cost
that was obtained by using the convolution ure, TheCAPTSDsolunon 6000 cpu required 40 million words of
memory, and was available the next day. convolution solution cost 10 cpu seconds, required 200 thousand words of memory, and
was available in 15 seconds. For linear results this is, of course, of minimal importance since linear problems are readily solved by more
cfficient means than a complex CFD code. 'meunphauon.howevu'udmmlnconuvin may be achieved for noalinear
solutions. It should also be mentioned that the cost of computing the unit pulse be added to the total cost of the
convolution solution, but that cost was only 2400 cpu seconds. realbcneﬁt obmmdﬁommeVolmoroonvoluuon
lppmlch.howevet.ulhamtheumtpdsempomes(orkmwh)mamhble,dtsunekm:clscanbeusedlopladlalbﬂuponx
1o other inputs.
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HIGH FREQUENCY PITCHING MOTION

6.0 r
deg,
deg/s
3.0}F
0.0
pitch rate (deg/s)
30
-6.0 L L { | H
0 1 2 3 4 5
chord lengths of travel
High Frequency Pitching Motion

For example, if the input is now a high frequency input such as shown in the chart, convolution of this input with the correspondin
unit pulse responses yterdls P ¢
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LIFT DUE TO HIGH FREQUENCY PITCHING MOTION

—8— CAP-TSD flat plate (6000s,40million, 1day)
50 —<—linear convolution (10s,200k,15s)

1.0 L 1 L 1
0 1 2 3 4 5
chord lengths of travel

Lift Due to High Frequency Pitching Motion
... this result. Again, the comparison between the CAP-TSD flat plate solution and the lincar convolution is excellent. Although the

cost of the CAP- solution is once again the same as that of the previous low-frequency resuls, the cost of the convolution is as
shown on the chart. The cost of the kernel computation was paid initially and is not paid again.
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FIRST-ORDER UNIT PULSE RESPONSE IN LIFT
DUE TO FIRST COMPONENT OF PITCHING MOTION

104

0.0 &

05 w . L
0 2

1
chord lengths of travel

First-Order Unit Pulse Response Due to First Component of Pitching Motion

Investigation of the nonlinear responses begins with the computation of the first-order kemel. It is important 1o realize that the first-
order kemel is the linear portion of the nonlinear response which is not, in general, equivalent to the purely linear response. Shown in
this chart is the first-order unit pulse response duc to the first component of the pitching motion. Although this response has a similar
characteristic to the purely linear unit pulse response shown previously, when ploted wgether noticeable differences are noticeable,
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FIRST-ORDER UNIT PULSE RESPONSE IN LIFT
DUE TO SECOND COMPONENT OF PITCHING MOTION

0.1

0.0

-0.1 1 {
0 1 2

chord lengths of travel

First-Order Unit Pulse Response Due to Second Component of Pitching Motion

This is the first-order unit pulse re: due w the second component of the pitching motion. Again, a similar characteristic to the
linear, or flat plate, responscg::it is m erent. pehng gt
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LIFT DUE TO FORCED HARMONIC PITCHING MOTIONS

CL O
200 b & O CAP-TSD flat plate &
O £ First-order convolution
O CAP-TSD w/ thickness
150
1.00 -
0.50 |-
0.00 = !
-0.50 | e Imaginary
-1.00 ‘ ' - L
0.00 0.25 0.50 0.75 1.00

reduced frequency

Lift Responses Due to Forced Harmonic Pitching Motions

The first-order kernel was evaluated using forced harmonic pitching motions at three reduced frequencies of motion and com;
with CAP-TSD flat plate and CAP-TSD with thickness results. The data indicates that the first-order kemel predicts the CAP- D
nonlinear (with thickness) result at the high frequency. This comparison is degraded as reduced frequency is lowered which is to be
expected since the transonic nonlinearities become more dominant as frequency is reduced. This indicates 2 need for the second-order
kemel responses. Of interest is once again the cost savings. The three first-order responses were generated in about half an hour
whereas the CAP-TSD results lasted several days and cost significantly more in CPU and memory.
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SECOND-ORDER (NONLINEAR) UNIT PULSE RESPONSE IN LIFT
DUE TO FIRST COMPONENT OF PITCHING MOTION

0.0030 -

0.0020
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-0.0000 VA _ A

-0.0010

-0.0020

-0.0030 :
0.0 0.5 1.0

chord lengths of travel

Second-Order Nonlinear Unit Pulse Response Due w0 First Component of Pitching Motion
Shown here is the first term of the second-order kemel, or unit pulse response, due 1o the first component of the pitching motion.

Note the noticeably different characteristic of this response as compared to the two previously shown responses. A total of four terms of
the second-order kemel were computed for the present analysis.
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LIFT DUE TO LOW FREQUENCY PITCHING MOTION

25 —8+— CAP-TSD flat plate

CAP-TSD w/ thickness

CL 1st order convolution
—&S— 1st+2nd order convolution

05 . i L
0 1 2 3 4 5

chord lengths of travel

Lift Due to Low Frequency Pitwching Motion

Shown here is a comparison of the responses obtained for the low frequency pitching motion: the CAP-TSD flat plate solution, the
CAP-TSD with thickness solution, the first-order convolution, and the summation of the first- and second-order convolutions. Itis
obvious that the purely linear response, the CAP-TSD flat plate response, is quite different from the CAP-TSD with thickness response.
The first-order solution, however, although it overshoots the CAP-TSD nonlinear solution (with thickness), is an improvement over the
linear response. This is most notable in the laner part of the responses. The addition of the second-order terms provides the necessary
difference to the first-order solution to accurately predict the peak of the CAP-TSD nonlinear solution, with very slight discrepancies near
the latter part of the responses.
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ADVANTAGES OF METHODOLOGY

CFD code used initially to define kernels

Once kernels are defined, CFD code NOT USED
AGAIN

Linear and nonlinear responses computed using
simple convolution subroutine (negligible cost)

Kernels can be used to generate linear and nonlinear
state-space matrices that define the unsteady
response of the aerodynamic system

Advantages of Methodology

] The advantages of the methodology are as follows. First, the CFD code is used initially to define the necessary kemels. Once the
kernels are defined, the CFD code need not be used again. This is where the potential for significant cost savings becomes obvious.
Second, once the kernels arc defined, linear and nonlinear responses can be computed using simple convolution routines at a negligible

computational cost. ﬁnnlly.fmndnkenwh.ﬁmumdnmhmnm-spwemamsanbemwddmdeﬁnethemmdy

response of the acrodynamic syswem. ’

455



CONTINUED DEVELOPMENT (PLANS)

Second-order kernel definition, application, limitations

DAVINCI (Definition of Aerodynamic Volterra
Integrals for Nonlinear Control Interactions) Team
formed with Aeroservoelasticity Branch
(Mukhophadyay, Wieseman)

System realization, bilinear equations

Apply methodology to Euler/Navier-Stokes code(s)

Continued Development (Plans)

Current efforts are aimed at additional second-order kernel definition and validation, applications, and limitations. The DAVINCI
(Definition of Aerodynamic Voherra Integrals for Nonlinear Control Interactions) Team has been formed with Dr. Vivek Mukhophadyay
and Carol Wieseman of the same branch. Additional work is being performed in understanding the system realization issues for bilinear
systems and bilinear equations. It is also planned to apply kemnel identification techniques to higher-level fluid dynamics equations such
as the Euler and Navier-Stokes equations.
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CONCLUDING REMARKS

Linear and nonlinear discrete aerodynamic unit pulse
response functions (kernels) defined for arbitrary
frequencies

Linear (ﬂat-plate) results : excellent

* Nonlinear results
- First-order term provides "linearized" result
- Second-order term provides nonlinear effect
- Additional validation/development underwayv

Cost savings (CPU, memory and turnaround time)

Concluding Remarks

In conclusion, linear and nonlinear discrete acrodynamic unit pulse response functions (kemels) were defined for arbitrary
frequencies. The fact that these functions exist is of significance as it sents an different to the indicial method. Linear, or
flat plate, results were excellent in comparison with the CAP-TSD flat plate g results. The linear results validae the use of unit
mmmhw; The nonlinear results are very encouraging in that, for the responses investigated, the first-
order term provides the ized" result and the second-order term captures the nonlinear effect. There is, of course, additional
validations and development work that needs to be performed to fully understand the effectiveness and the limitations of the
methodology. As was shown, the cost savings is significant for the cases shown, which would make CFD codes practical for
preliminary analysis and design.
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